Anderson, N. M. & Simon, M. C. The tumor microenvironment. Curr. Biol. 30, R921–R925 (2020).
Roma-Rodrigues, C., Mendes, R., Baptista, P. V. & Fernandes, A. R. Concentrating on tumor microenvironment for most cancers remedy. Int. J. Mol. Sci. 20, 840 (2019).
Reid, S. P. et al. Ebola virus VP24 binds karyopherin α1 and blocks STAT1 nuclear accumulation. J. Virol. 80, 5156–5167 (2006).
Woolsey, C. et al. A VP35 mutant Ebola virus lacks virulence however can elicit protecting immunity to wild-type virus problem. Cell Rep. 28, 3032–3046 (2019).
Caballero, I. S. et al. In vivo Ebola virus an infection results in a powerful innate response in circulating immune cells. BMC Genomics 17, 707 (2016).
Liu, X. et al. Transcriptomic signatures differentiate survival from deadly outcomes in people contaminated with Ebola virus. Genome Biol. 18, 4 (2017).
Speranza, E. et al. Previremic identification of Ebola or Marburg virus an infection utilizing built-in host-transcriptome and viral genome detection. mBio 11, e01157-20 (2020).
Wong, H. S. & Germain, R. N. Mesoscale T cell antigen discrimination emerges from intercellular suggestions. Tendencies Immunol. 42, 865–875 (2021).
Germain, R. N. et al. Understanding immunity in a tissue-centric context: combining novel imaging strategies and arithmetic to extract new insights into perform and dysfunction. Immunol. Rev. 306, 8–24 (2022).
Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).
Bjarnsholt, T. et al. The significance of understanding the infectious microenvironment. Lancet Infect. Dis. 22, e88–e92 (2022).
Depledge, D. P., Mohr, I. & Wilson, A. C. Going the space: optimizing RNA-Seq methods for transcriptomic evaluation of complicated viral genomes. J. Virol. 93, e01342-18 (2019).
Newman, A. M. et al. Figuring out cell kind abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).
Solar, X., Solar, S. & Yang, S. An environment friendly and versatile technique for deconvoluting bulk RNA-Seq information with single-cell RNA-Seq information. Cells 8, 1161 (2019).
Newman, A. M. et al. Sturdy enumeration of cell subsets from tissue expression profiles. Nat. Strategies 12, 453–457 (2015).
Tsalik, E. L. et al. The host response to viral infections reveals widespread and virus-specific signatures within the peripheral blood. Entrance Immunol. 12, 741837 (2021).
Wang, R. Y. L., Weng, Okay. F., Huang, Y. C. & Chen, C. J. Elevated expression of circulating miR876-5p is a particular response to extreme EV71 infections. Sci. Rep. 6, 24149 (2016).
Speranza, E. et al. T-cell receptor range and the management of T-cell homeostasis mark Ebola virus illness survival in people. J. Infect. Dis. 218, S508–S518 (2018).
Speranza, E. et al. Comparability of transcriptomic platforms for evaluation of entire blood from Ebola-infected cynomolgus macaques. Sci. Rep. 7, 14756 (2017).
Warren, S. in Gene Expression Evaluation: Strategies and Protocols (eds Raghavachari, N. & Garcia-Reyero, N.) 105–120 (Springer New York, 2018).
Fast, J. et al. Multiplex PCR technique for MinION and Illumina sequencing of Zika and different virus genomes instantly from scientific samples. Nat. Protoc. 12, 1261–1276 (2017).
Wang, J., Moore, N. E., Deng, Y. M., Eccles, D. A. & Corridor, R. J. MinION nanopore sequencing of an influenza genome. Entrance. Microbiol. 6, 766 (2015).
Yakovleva, A. et al. Monitoring SARS-COV-2 variants utilizing nanopore sequencing in Ukraine in 2021. Sci. Rep. 12, 15749 (2022).
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC–Seq: a way for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.21–21.29.29 (2015).
Scott-Browne, J. P. et al. Dynamic modifications in chromatin accessibility happen in CD8+ T cells responding to viral an infection. Immunity 45, 1327–1340 (2016).
Bruzzone, C. et al. SARS-CoV-2 an infection dysregulates the metabolomic and lipidomic profiles of serum. iScience 23, 101645 (2020).
Schwarz, B. et al. Chopping Edge: Extreme SARS-CoV-2 an infection in people is outlined by a shift within the serum lipidome, leading to dysregulation of eicosanoid immune mediators. J. Immunol. 206, 329–334 (2021).
Speranza, E. et al. Age-related variations in immune dynamics throughout SARS-CoV-2 an infection in rhesus macaques. Life Sci. Alliance 5, e202101314 (2022).
Roberts, L. M. et al. Pulmonary an infection induces persistent, pathogen-specific lipidomic modifications influencing educated immunity. iScience 24, 103025 (2021).
Barberis, E. et al. Understanding safety from SARS-CoV-2 utilizing metabolomics. Sci. Rep. 11, 13796 (2021).
Cui, L. et al. Metabolomics investigation reveals metabolite mediators related to acute lung harm and restore in a murine mannequin of influenza pneumonia. Sci. Rep. 6, 26076 (2016).
Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J. & Germain, R. N. Histo-cytometry: a way for extremely multiplex quantitative tissue imaging evaluation utilized to dendritic cell subset microanatomy in lymph nodes. Immunity 37, 364–376 (2012).
Mathew, D. et al. Deep immune profiling of COVID-19 sufferers reveals distinct immunotypes with therapeutic implications. Science 369, eabc8511 (2020).
Holmes, Okay. L. Characterization of aerosols produced by cell sorters and analysis of containment. Cytometry A 79, 1000–1008 (2011).
Robinson, J. P. Movement cytometry: previous and future. Biotechniques 72, 159–169 (2022).
Park, L. M., Lannigan, J. & Jaimes, M. C. OMIP-069: forty-color full spectrum movement cytometry panel for deep immunophenotyping of main cell subsets in human peripheral blood. Cytometry A 97, 1044–1051 (2020).
Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses throughout a human hematopoietic continuum. Science 332, 687–696 (2011).
Bodenmiller, B. et al. Multiplexed mass cytometry profiling of mobile states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858–867 (2012).
Leelatian, N. et al. Unsupervised machine studying reveals danger stratifying glioblastoma tumor cells. eLife 9, e56879 (2020).
Lee, J. S. et al. Single-cell transcriptome of bronchoalveolar lavage fluid reveals sequential change of macrophages throughout SARS-CoV-2 an infection in ferrets. Nat. Commun. 12, 4567 (2021).
Johnson, M. B. et al. Single-cell evaluation reveals transcriptional heterogeneity of neural progenitors in human cortex. Nat. Neurosci. 18, 637–646 (2015).
Meyer, M. et al. Attenuated activation of pulmonary immune cells in mRNA-1273-vaccinated hamsters after SARS-CoV-2 an infection. J. Clin. Make investments. 131, e148036 (2021).
Nouailles, G. et al. Temporal omics evaluation in Syrian hamsters unravel mobile effector responses to average COVID-19. Nat. Commun. 12, 4869 (2021).
Friedrichs, V. et al. Panorama and age dynamics of immune cells within the Egyptian rousette bat. Cell Rep. 40, 111305 (2022).
Wang, X., Yu, L. & Wu, A. R. The impact of methanol fixation on single-cell RNA sequencing information. BMC Genomics 22, 420 (2021).
Phan, H. V. et al. Excessive-throughput RNA sequencing of paraformaldehyde-fixed single cells. Nat. Commun. 12, 5636 (2021).
Logue, J. et al. in International Virology III: Virology within the twenty first Century (eds Shapshak, P. et al.) 437–469 (Springer Worldwide Publishing, 2019).
Gierahn, T. M. et al. Seq-Properly: moveable, low-cost RNA sequencing of single cells at excessive throughput. Nat. Strategies 14, 395–398 (2017).
Clark, I. C. et al. Microfluidics-free single-cell genomics with templated emulsification. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01685-z (2023).
Tian, Y. et al. Single-cell immunology of SARS-CoV-2 an infection. Nat. Biotechnol. 40, 30–41 (2022).
Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and mobile targets. Nature 595, 107–113 (2021).
Liu, C. et al. Time-resolved programs immunology reveals a late juncture linked to deadly COVID-19. Cell 184, 1836–1857 (2021).
Loske, J. et al. Pre-activated antiviral innate immunity within the higher airways controls early SARS-CoV-2 an infection in kids. Nat. Biotechnol. 40, 319–324 (2022).
Chua, R. L. et al. COVID-19 severity correlates with airway epithelium–immune cell interactions recognized by single-cell evaluation. Nat. Biotechnol. 38, 970–979 (2020).
Garcia-Flores, V. et al. Maternal-fetal immune responses in pregnant girls contaminated with SARS-CoV-2. Nat. Commun. 13, 320 (2022).
Kotliar, D. et al. Single-cell profiling of Ebola virus illness in vivo reveals viral and host dynamics. Cell 183, 1383–1401 (2020).
Zanini, F., Pu, S. Y., Bekerman, E., Einav, S. & Quake, S. R. Single-cell transcriptional dynamics of flavivirus an infection. eLife 7, e32942 (2018).
Wyler, E. et al. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat. Commun. 10, 4878 (2019).
Ratnasiri, Okay., Wilk, A. J., Lee, M. J., Khatri, P. & Blish, C. A. Single-cell RNA-Seq strategies to interrogate virus–host interactions. Semin Immunopathol. 45, 71–89 (2023).
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Strategies 14, 865–868 (2017).
Mulè, M. P., Martins, A. J . & Tsang, J. S. Normalizing and denoising protein expression information from droplet-based single cell profiling. Nat. Commun. 13, 2099 (2022).
Singh, M. et al. Excessive-throughput focused long-read single cell sequencing reveals the clonal and transcriptional panorama of lymphocytes. Nat. Commun. 10, 3120 (2019).
Ma, S. et al. Chromatin potential recognized by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116 (2020).
Stephenson, E. et al. Single-cell multi-omics evaluation of the immune response in COVID-19. Nat. Med. 27, 904–916 (2021).
Wimmers, F. et al. The only-cell epigenomic and transcriptional panorama of immunity to influenza vaccination. Cell 184, 3915–3935 (2021).
Dohmen, J. et al. Figuring out tumor cells on the single-cell degree utilizing machine studying. Genome Biol. 23, 123 (2022).
Cohen, E. M., Avital, N., Shamay, M. & Kobiler, O. Abortive herpes simplex virus an infection of nonneuronal cells leads to quiescent viral genomes that may reactivate. Proc. Natl Acad. Sci. USA 117, 635–640 (2020).
Younan, P. et al. Ebola virus-mediated T-lymphocyte depletion is the results of an abortive an infection. PLoS Pathog. 15, e1008068 (2019).
Griffin, D. E. Why does viral RNA typically persist after restoration from acute infections? PLoS Biol. 20, e3001687 (2022).
van den Elsen, Okay., Quek, J. P. & Luo, D. Molecular insights into the flavivirus replication complicated. Viruses 13, 956 (2021).
O’Neal, J. T. et al. West Nile virus-inclusive single-cell RNA sequencing reveals heterogeneity within the Sort I interferon response inside single cells. J. Virol. 93, e01778-18 (2019).
Chung, H. et al. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat. Strategies 18, 1204–1212 (2021).
Bost, P. et al. Host-viral an infection maps reveal signatures of extreme COVID-19 sufferers. Cell 181, 1475–1488 (2020).
Speranza, E. et al. Single-cell RNA sequencing reveals SARS-CoV-2 an infection dynamics in lungs of African inexperienced monkeys. Sci. Transl. Med. 13, eabe8146 (2021).
Kim, D. et al. The structure of SARS-CoV-2 transcriptome. Cell 181, 914–921 (2020).
Muhlberger, E. Filovirus replication and transcription. Future Virol. 2, 205–215 (2007).
Solignat, M., Homosexual, B., Higgs, S., Briant, L. & Devaux, C. Replication cycle of chikungunya: a re-emerging arbovirus. Virology 393, 183–197 (2009).
Grant, S. M., Lou, M., Yao, L., Germain, R. N. & Radtke, A. J. The lymph node at a look—how spatial group optimizes the immune response. J. Cell Sci. 133, jcs241828 (2020).
Stoltzfus, C. R. et al. CytoMAP: a spatial evaluation toolbox reveals options of myeloid cell group in lymphoid tissues. Cell Rep. 31, 107523 (2020).
Radtke, A. J. et al. A multi-scale, multiomic atlas of human regular and follicular lymphoma lymph nodes. Preprint at bioRxiv https://doi.org/10.1101/2022.06.03.494716 (2022).
Eng, J. et al. A framework for multiplex imaging optimization and reproducible evaluation. Commun. Biol. 5, 438 (2022).
Chen, H. Y., Palendira, U. & Feng, C. G. Navigating the mobile panorama in tissue: latest advances in defining the pathogenesis of human illness. Computational Struct. Biotechnol. J. 20, 5256–5263 (2022).
Hickey, J. W. et al. Spatial mapping of protein composition and tissue group: a primer for multiplexed antibody-based imaging. Nat. Strategies 19, 284–295 (2022).
Frederico, B., Chao, B., Lawler, C., Could, J. S. & Stevenson, P. G. Subcapsular sinus macrophages restrict acute gammaherpesvirus dissemination. J. Gen. Virol. 96, 2314–2327 (2015).
Reynoso, G. V. et al. Zika virus spreads via an infection of lymph node-resident macrophages. Cell Rep. 42, 112–126 (2023).
Hickman, H. D. et al. Anatomically restricted synergistic antiviral actions of innate and adaptive immune cells within the pores and skin. Cell Host Microbe 13, 155–168 (2013).
Greenberg, A. et al. Quantification of viral and host biomarkers within the liver of rhesus macaques: a longitudinal examine of Zaire Ebolavirus pressure Kikwit (EBOV/Kik). Am. J. Pathol. 190, 1449–1460 (2020).
Radtke, A. J. et al. IBEX: a flexible multiplex optical imaging strategy for deep phenotyping and spatial evaluation of cells in complicated tissues. Proc. Natl Acad. Sci. USA 117, 33455–33465 (2020).
Jiang, S. et al. Rhesus macaque CODEX multiplexed immunohistochemistry panel for learning immune responses throughout Ebola an infection. Entrance. Immunol. 12, 729845 (2021).
Rendeiro, A. F. et al. The spatial panorama of lung pathology throughout COVID-19 development. Nature 593, 564–569 (2021).
Berry, S. et al. Evaluation of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade. Science 372, eaba2609 (2021).
Greenwald, N. F. et al. Entire-cell segmentation of tissue photographs with human-level efficiency utilizing large-scale information annotation and deep studying. Nat. Biotechnol. 40, 555–565 (2022).
Lee, M. Y. et al. CellSeg: a strong, pre-trained nucleus segmentation and pixel quantification software program for extremely multiplexed fluorescence photographs. BMC Bioinform. 23, 46 (2022).
Methodology of the 12 months 2020: spatially resolved transcriptomics. Nat. Strategies 18, 1 (2021).
Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue structure utilizing spatial transcriptomics. Nature 596, 211–220 (2021).
Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Strategies 19, 534–546 (2022).
Tian, L., Chen, F. & Macosko, E. Z. The increasing vistas of spatial transcriptomics. Nat. Biotechnol. 41, 773–782 (2022).
Acheampong, Okay. Okay. et al. Multiplexed detection of SARS-CoV-2 genomic and subgenomic RNA utilizing in situ hybridization. Preprint at bioRxiv https://doi.org/10.1101/2021.08.11.455959 (2021).
Chen, Okay. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, extremely multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).
He, J. et al. In situ single-cell transcriptomic imaging in formalin-fixedparaffin-embedded tissues with MERSCOPE. Most cancers Res. 83, 4195 (2023).
Mantri, M. et al. Spatiotemporal transcriptomics reveals pathogenesis of viral myocarditis. Nat. Cardiovascular Res. 1, 946–960 (2022).
Gracia Villacampa, E. et al. Genome-wide spatial expression profiling in formalin-fixed tissues. Cell Genomics 1, 100065 (2021).
Kulasinghe, A. et al. Profiling of lung SARS-CoV-2 and influenza virus an infection dissects virus-specific host responses and gene signatures. Eur. Respiratory J. 59, 2101881 (2022).
Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in mounted tissue. Nat. Biotechnol. 38, 586–599 (2020).
Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts options of mind cell identification. Cell 177, 1873–1887 (2019).
Stuart, T. et al. Complete integration of single-cell information. Cell 177, 1888–1902 (2019).
Altboum, Z. et al. Digital cell quantification identifies international immune cell dynamics throughout influenza an infection. Mol. Syst. Biol. 10, 720 (2014).
Rooijers, Okay. et al. Simultaneous quantification of protein-DNA contacts and transcriptomes in single cells. Nat. Biotechnol. 37, 766–772 (2019).
Xi, N. M. & Li, J. J. Benchmarking computational doublet-detection strategies for single-cell RNA sequencing information. Cell Syst. 12, 176–194 (2021).
Wang, F. et al. RNAscope: a novel in situ RNA evaluation platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).
Radtke, A. J. et al. IBEX: an iterative immunolabeling and chemical bleaching technique for high-content imaging of numerous tissues. Nat. Protoc. 17, 378–401 (2022).
Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).
Goltsev, Y. et al. Deep profiling of mouse splenic structure with CODEX multiplexed imaging. Cell 174, 968–981 (2018).
Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).
Tsujikawa, T. et al. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity related to poor prognosis. Cell Rep. 19, 203–217 (2017).
Stack, E. C., Wang, C., Roman, Okay. A. & Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: a assessment, with an evaluation of tyramide sign amplification, multispectral imaging and multiplex evaluation. Strategies 70, 46–58 (2014).
Ståhl, P. et al. Visualization and evaluation of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).